В прямоугольном треугольнике с катетами 3 и 5 вписан квадрат,имеющий с треугольником общий прямой угол.Найти периметр квадрата. Решение.Обозначим наш треугольник как АВС причем АВ=3, ВС =5. Угол В-прямой=90 градусов.Впишем квадрат ДЕКВ где точка Д принадлежит АВ, Е принадлежит АС, К принадлежит СВ. Пусть длина стороны квадрата равна х, тогда надо найти P=4x.Рассмотрим треугольники АЕВ и СВЕ. В этих треугольниках ЕД и ЕК являются их высотами. Поэтому площади этих треугольников равныСумма площадей этих треугольников равна площади треугольника АВСТеперь можно найти х8x=15x=15/8Найдем периметр квадратаP=4x=4*(15/8)=15/2=7,5Ответ:7,5мне поставил две 5