• при каком значении параметра А система уравнений имеет а) одно решение б) три решения

    {x^2+y^2=3 и y-x^2=A

Ответы 1

  • Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение,  Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3. 1) Если A=√3, то y=x²+√3, (x²+√3)²+x²=3x⁴+(2√3+1)x²=0x²(x²+2√3+1)=0x=0; x²+2√3+1=0 действительных корней не имеет.Итак, в этом случае 1 решение.2) Если A=-√3, то y=x²-√3, (x²-√3)²+x²=3x⁴+(-2√3+1)x²=0x²(x²-2√3+1)=0x=0; x²=2√3-1>0 - дает еще два решения. Итак, в этом случае 3 решения.Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше. 
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years