• Разность арифметической прогрессии отлична от нуля. Числа, равные произведениям первого члена этой прогрессии на второй, второго члена на третий и
    третьего на первый, образуют в указанном порядке геометрическую прогрессию. Найти ее знаменатель.

Ответы 6

  • написал
    • Автор:

      mariyah
    • 5 лет назад
    • 0
  • У вас идет: (x^2+2xd+d^2)(x^2+4dx+4d^2)=x^2(x+2d)(x+d), затем сразу d=-a1/2; d=-a1; d=-3a1/2. Я не понимаю переход из этого уравнения к d. Раскрыл скобки, все равно не получается.. Был бы очень благодарен, если бы вы прояснили этот момент..
    • Автор:

      evelyn
    • 5 лет назад
    • 0
  • перезагрузи страницу если не видно
  • (x+d)(x+2d)=x^2 это понятно, но почему потом идет (x+d)(x+2d)(x^2+3dx+2d^2-x^2)=0? После (x+d)(x+2d)=x^2 должно же получиться (x+d)(x+2d)-x^2=0 x^2+3dx+2d^2-x^2=0 3dx-2d^2=0 Отсюда d=0 (не подходит) и d=-3x/2?
    • Автор:

      nigel
    • 5 лет назад
    • 0
  • потому что ((x+d)(x+2d))^2-x^2(x+2d)(x+d) = (x+d)(x+2d)((x+d)(x+2d)-x^2)=0 , (x+d)(x+2d)(x^2+3dx+2d^2-x^2)=0 итд
    • Автор:

      macho
    • 5 лет назад
    • 0
  •  Можно выразить d d>0 \ d<0\\ b_{1}=a_{1}a_{2}\\ b_{2}=a_{2}a_{3}\\ b_{3}=a_{1}a_{3}\\\\ \frac{a_{2}a_{3}}{a_{1}a_{2}}=\frac{ a_{1}a_{3}}{a_{2}a_{3} } \\ ((a_{1}+d)(a_{1}+2d)) ^2 = a_{1}^2(a_{1}+2d)(a_{1}+d)\\ a_{1}=x\\ (x^2+2xd+d^2)(x^2+4dx+4d^2)=x^2(x+2d)(x+d)\\ (x+d)(x+2d)(x^2+3dx+2d^2-x^2) = 0 \\ x=-d\\ x=-2d\\ 3dx+2d^2=0\\ x=\frac{-2d}{3} \\ d=-\frac{ a_{1} }{2}\\ d=-a_{1}\\ d=\frac{-3a_{1}}{2}\\\\ но заметим что  d eq -a_{1} 
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years