• Найти D(x),если f(x)=arctg 5/x , Найти E(x),если f(x)=arcsin x+п/4

Ответы 1

  • (x)=\mathrm{arctg} \frac{5}{x}  Под знаком арктангенса может стоять любое число, осталось учесть то, что на ноль делить нельзя:x\in(-\infty;0)\cup(0;+\infty)f(x)=\arcsin x+ \frac{ \pi }{4}Область значений стандартной функции арксинуса:- \frac{ \pi }{2}  \leq \arcsin x \leq  \frac{ \pi }{2} Ко всем частям двойного неравенства прибавляем π/4 и получаем ответ:- \frac{ \pi }{2}+ \frac{ \pi }{4}  \leq \arcsin x+ \frac{ \pi }{4}  \leq \frac{ \pi }{2}+ \frac{ \pi }{4} 
\\\
- \frac{ 2\pi }{4}+ \frac{ \pi }{4}  \leq \arcsin x+ \frac{ \pi }{4}  \leq \frac{ 2\pi }{4}+ \frac{ \pi }{4} 
\\\
- \frac{ \pi }{4}  \leq \arcsin x+ \frac{ \pi }{4}  \leq \frac{ 3\pi }{4}
\\\
E(x)\in [- \frac{ \pi }{4}; \frac{3 \pi }{4}  ]
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years