• сколькими способами можно расположить на шахматной доске двух королей так, чтобы они не "били" друг друга?

Ответы 1

  • на поле 64 клетки, если белый  король будет стоять на угловой клетке, он не будет давать расположить черного короля на 4 клетках, включаю ту на которой стоит, следовательно 4 угла * (64-4)=240 вариантов расположения.

     

    далее есть четыре крайних горизонтали и вертикали, стоя на которых  белый король будет занимать 6 клеток, включая ту на которой стоит, в каждой такой горизонтали и вертикали есть по два угла, которые уже учтены, следовательно 4 * (8-2) * (64-(4*(8-2))=24*40=960 вариантов.

     

    неучтенными остались 64-4-(4*(8-2)=36 клеток, стоя на которых белый король будет занимать 9 клеток, включая ту на которой стоит, следовательно 36 * (64-9)=1980 вариантов.

     

    общее кол-во вариантов=240+960+1980=3180

     

    если поменять местами белого и черного короля, то добавится такое же кол-во вариантов, следовательно ответ 3180*2=6360 способов

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years