решается методом введения вспомогательного угла. для этого надо сачала найти число,на которое будем делить все уравнение. Оно находится по формуле: квадратный корень из суммы квадратов коэффициентов перед синусом и косинусом. Так как эти коэффициенты равны единицам, то число, на которое будем делить все уравнение равно корню изи двух. Теперь справа получим корень из трех, деленный на два, а слева перед синусом и косинусом получим коэффициенты единица, деленная на корень из двух. Эти коэффициенты после избавления от иррациональности примут вид: корень из двух, деленный на два. Тот из них, оторый стоит перед синусом, примем за косинус угла фи, а тот, который стоит перед косинусом - за синус угла фи. Получим:
cos F * sin 5x - sin F * cos 5x = \sqrt{3} / 2
Левую часть соберем по формуле синус разности двух углов. Получим:
sin (5x - F) = \sqrt{3} / 2
Далее как простейшее тригонометрическое уравнение.
Автор:
meganrichДобавить свой ответ
Ребят помогите решить,кто-нибудь, пожалуйста.Желательно с подробным объяснением.
2) Площадь осевого сечения цилиндра 12√π дм квадратных,а площадь основания равна 64 дм квадратных.Найдите высоту цилиндра.
3)Отрезок СД равен 25 см,его концы лежат на разных окружностях основания цилиндра.Найдите расстояние от отрезка СД до основания цилиндра,если его высота 7 см,а диаметр основания 26.
6) Отрезок ДЕ-хорда основания конуса,которая удалена от оси конуса 9 см.Отрезок КО-высота конуса,причем КО=3√3 см .Найдите расстояние от точки конуса О(центр основания конуса) до плоскости,проходящей через точки Д , Е и К.
7) Сфера w проходит через вершины квадрата CDEF,сторона которого равна 18 см. Найдите расстояние от центра сферы-точки О до плоскости квадрата,если сферы ОЕ образует с плоскостью квадрата угол равный 30 градусам.
8)Стороны треугольника МNK касаются шара.Найдите радиус шара МК=9,МN=13,KN=14 и расстояние от центра шара О до плоскости MNK равно √6
5х(4-х)-х(2-5Х)=2(5х-8)
Предмет:
АлгебраАвтор:
sweet tea2hviОтветов:
Смотреть
Снаряд, запущенный с начальной скоростью, равной 240 м/с под углом 60 градусов к горизонту, попадает в цель, расположенную на вершине холма высотой 500 метров. Выясните расстояние до цели и продолжительность движения снаряда.