• Расстояние между пристанями А и В равно 75 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошёл 44 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч

Ответы 1

  • Решим задачу на движение по воде

    Дано: S=75 км S(плота)=44 км v(теч.)=v(плота)=4 км/час Найти: v(собств. лодки)=? км/час РЕШЕНИЕ 1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=4 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=44÷4=11 (часов). 2) Лодка отправилась на 1 час позже, значит она была в пути 11-1=10 часов. Лодка проплыла между пристанями А и В 75 км, и вернулась обратно от пристани В к А, проплыв ещё 75 км.   Пусть х - собственная скорость лодки. По течению моторная лодка плыла со скоростью: v(по теч.)=v(собств.) + v(теч.)=х+4 км/час Против течения моторная лодка плыла со скоростью: v(пр. теч.)=v(собств.) - v(теч.)=х-4 км/час Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=75/(х+4) часа Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=75/(х-4) часа. Всего на путь туда и обратно ушло 10 часов. Составим и решим уравнение: 75/(х+4)+75/(х-4)=10 (умножим на (х-4)(х+4), чтобы избавиться от дробей) 75×(х-4)(х+4)/(х+4) + 75×(х+4)(х-4)/(х-4)=10(х+4)(х-4) 75(х-4) + 75(х+4)=10(х²-16) 75х-300+75х+300=10х²-160 150х=10х²-160 10х²-150х-160=0 D=b²-4ac=(-150)²+4×10×(-160)=22500+6400=28900 (√D=170) х₁=(-b+√D)/2a=(-(-150)+170)/2×10=320/20=16 (км/час)

    х₂=(-b-√D)/2a=(-(-150) -170)/2×10=-20/20=-1 (х₂<0 - не подходит) ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 16 км/час.

    • Автор:

      dixiequrx
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years