• Исследовать на экстремум функцию y=x^3+3x^2+9x-6

Ответы 1

  • y=x^3+3x^2+9x-6 Найдем производную функции: y'=3x^2+6x+9. Теперь приравняем производную к нулю, чтобы найти точки экстремума: 3x^2+6x+9=0 \\ x^2+2x+3=0 \\ x_{12}=\frac{-1+- \sqrt{1-3}}{1}. Как видно, дискриминант квадратного уравнения отрицательный, а значит решений нет, отсюда заключаем, что точек экстремума у данной функции нет! (Во вложениях изображение производной!)
    answer img
    answer img
    • Автор:

      zoee3nn
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years