2 sin⁴x +3cos2x +1=02 sin⁴x+3(cos²x-sin²x)+1=02 sin⁴x+3(1-sin²x-sin²x)+1=02sin⁴x+3(1-2sin²x)+1=02sin⁴x+3-6sin²x+1=02sin⁴x-6sin²x+4=0sin⁴x-3sin²x+2=0Пусть у=sin²xy²-3y+2=0D=9-8=1y₁=
3-1=1 2y₂=
3+1=2 2При у=1sin²x=1sin²x-1=0(sinx-1)(sinx+1)=0sinx-1=0 sinx+1=0sinx=1 sinx=-1x=
π + 2πn x=
-π + 2πn 2 2При у=2sin²x=2sin²x-2=0(sinx-√2)(sinx+√2)=0sinx-√2=0 sinx+√2=0sinx=√2 sinx=-√2√2∉[-1; 1] -√2∉[-1; 1]нет решений нет решенийx∈[π; 3π]х=
π + 2πn 2π≤
π+2πn ≤3π 2π-
π ≤ 2πn ≤ 3π -
π 2 2
π ≤ 2πn ≤
5π 2 2
π : 2π ≤ n ≤
5π : 2π2 2
π *
1 ≤ n ≤
5π *
1 2 2π 2 2π1/4 ≤ n ≤ 5/40.25 ≤ n ≤ 1.25n=1x=
π + 2π*1 =
5π 2 2x=
-π +2πn 2π ≤
-π + 2πn ≤ 3π 2π +
π ≤ 2πn ≤ 3π +
π 2 2
3π ≤ 2πn ≤
7π 2 2
3π *
1 ≤ n ≤
7π *
1 2 2π 2 2π3/4 ≤ n ≤ 7/40.75 ≤ n ≤ 1.75n=1x=
-π + 2π *1 =
3π 2 2Ответ:
3π ;
5π 2 2