• ((sina-cosa)^2-1+sin4a)/(cos2a+cos4a)

Ответы 1

  • Для удобства написания заменила угол а на угол х\Large \frac{(sinx-cosx)^2-1+sin4x}{cos2x+cos4x} = \frac{sin^2x-2sinx*cosx+cos^2x-1+sin4x}{cos2x+cos4x}=\\= \frac{-2sinx*cosx+sin4x}{cos2x+(2cos^2x-1)}= \frac{sin4x-sin2x}{(cos2x+1)(2cos2x-1)}=\\= \frac{2sin2x*cos2x-sin2x}{(cos2x+1)(2cos2x-1)}= \frac{sin2x(2cos2x-1)}{(cos2x+1)(2cos2x-1)}= \frac{sin2x}{cos2x+1}=\\= \frac{2sinx*cosx}{cos^2-sin^2x+cos^2x+sin^2x}= \frac{2sinx*cosx}{2cos^2x}= \frac{sinx}{cosx}=tgx         ______________пояснения\Large cos2x+2cos^22x-1разложим на множители\Large cos2x=t\\2t^2+t-1=0\\t_1=-1; t_2=1/2\\2cos^2x+cos2x-1=(cos2x+1)(2cos2x-1)
    • Автор:

      brisa
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years