• Постройте график функции y=x^2 - |4x+3| и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки. Можете написать только все
    значения m. Заранее спасибо)))

Ответы 2

  • огромное спасибо)
  • Рассмотрим критическую точку модуля:  4x + 3 = 0 Значит, при x = -3/4, модуль меняет знак. Подставим под модуль число меньшее -3/4. Тогда под модулем получим отрицательное значение. Тогда, при x ≤ 3/4, модуль раскрываем отрицательно.Рассмотрим нашу функцию на промежутке (-∞; -3/4]:y = x² + 4x + 3.  Строим график этого уравнения хотя бы по точкам. Но помним, что этот график лежит на отрезке (-∞; -3/4].Рассмотрим нашу функцию на промежутке (-3/4; +∞):y = x² - 4x - 3. Строим этот график. Но опять же, он лежит на (-3/4; +∞), а не на всей области X. Если первый график в точке -3/4 не накладывается на второй, не забываем выбить точку в x = -3/4 у второго графика.Получили график, который я прикрепил как рисунок.Видим, что прямая y = m будет иметь три точки пересечения с нашим графиком, при m = -1, и m равному значению, при котором наши графики меняются.Чтобы найти это значение, подставим X = -3/4 в наше уравнение. Получаем Y = 0.5625. Получаем, m = -1 и m = 0.5625
    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years