• Найдите площадь фигуры ограниченной линиями y=4-x^2, y=2+x. помогите пожалуйста.напишите развернутый ответ

Ответы 1

  • Найдём точки пересечения: y=4-x^{2}=2+x; \ \ x^{2}+x-2=0; \ \ \ x_{1}=-2; \ x_{2}=1Вычисляем площадь: S=\int\limits^1_{-2}{((4-x^{2})-(2+x))} \, dx=\int\limits^1_{-2} {(2-x-x^{2})} \, dx= \\=\left.{ (2x-\frac{x^{2}}{2} - \frac{x^{3}}{3}}})ight|_{-2}^{1}=(2- \frac{1}{2} - \frac{1}{3})-(-4-2+ \frac{8}{3} )=8- \frac{1}{2}-3=\frac{9}{2}
    • Автор:

      valencia
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years