• Найдите угловой коэффициент касательной к графику функции f(x)=1-2x/4x+1, проведенной в точке с абсциссой -0,5

Ответы 2

  • k=f`(x0)f`(x)=(-2(4x+1)-4(1-2x))/(4x+1)²=(-8x-2-4+8x)/(4x+1)²=-6/(4x+1)²f`(-0,5)=-6/(-2+1)²=-6k=-6
  • k=tg \alpha =f'(x_0)угловой коэффициент = тангенсу угла наклона касательной = производной функции в точке.Можем найти производную:f'(x)=( \frac{1-2x}{4x+1} )'= \frac{(1-2x)'(4x+1)-(4x+1)'(1-2x)}{(4x+1)^2} = \frac{-2(4x+1)-4(1-2x)}{(4x+1)^2} = \\  \\ = \frac{-8x-2-4+8x}{(4x+1)^2} = \frac{-6}{(4x+1)^2} \\ \\ f'(x_0)=f'(-0,5)=\frac{-6}{(4*(-0,5)+1)^2} = \frac{-6}{(-2+1)^2} = \frac{-6}{1} =-6k=-6Ответ: -6
    • Автор:

      dottie40
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years