• 7. Двоим друзьям потребовалось вычислить 4^2-3^2. Они заметили, что результат — число 7 — равен сумме оснований квадратов чисел 4 и 3. Проверив свое открытие на числах 10 и 11, друзья установили, что оно подтверждается: 11^2-10^2 = 21 = 11 10. После этого друзья нашли все пары (а; b) натуральных чисел а > b, для которых разность а^2-b^2 равна сумме а+b. Как друзьям удалось найти все такие числа (а; b)?

Ответы 1

  • Формула разности квадратовa²-b²=(a+b)(a-b)причем a-b=14²-3²=(4+3)(4-3)=7·1=75²-4²=(5+4)(5-4)=9·1=911²-10²=(11+10)(11-10)=21·1=21
    • Автор:

      lil girl
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years