Импликация раскрывается так:A → B = ~A V B (здесь ~A = НЕ А)Эквиваленция раскрывается так:A ↔ B = (~A /\ ~B) V (A /\ B)Подставляем:1. (A /\ B) → (A V B) = ~(A /\ B) V (A V B) = ~A V ~B V A V B = 1Формула тождественно истинна2. (A V B)
→
(A /\ B) = ~(A V B) V (A /\ B) = (~A /\ ~B) V (A /\ B) =
A ↔ BФормула является выполнимой3. (A V (B ↔ A)) /\ (A → B) = (A V (~B /\ ~A) V (B /\ A)) /\ (~A V B) = ZПо закону поглощения A V
(B /\ A) = A, поэтомуZ = (A V (~B /\ ~A))
/\ (~A V B) = (A V ~B) /\ (A V ~A) /\ (~A V B) == (A V ~B) /\ 1 /\ (~A V B) = (A V ~B) /\ (~A V B) == (A /\ ~A) V (~B /\ ~A) V (A /\ B) V (~B /\ B) = (~B /\ ~A) V (A /\ B)
=
A ↔ B
Формула является выполнимой