• Докажите, что если функция А (х) определена для всех значений х, при которых определены функции f(x) и k(x), то неравенства f(x)<=k(x) и
    f(x)+A(x)<=k(x)+A(x) равносильны

Ответы 1

  • Рассмотрим f(x)<=k(x). Если отнимем от неравенства левую часть, то получим k(x)-f(x)>=0.  Теперь рассмотрим f(x)+A(x)<=k(x)+A(x). Отнимем от неравенства левую часть и получим: k(x)+A(x)-f(x)-A(x)>=0; сократим и получим то-же неравенство k(x)-f(x)>=0. Значит оба неравенства равносильны.
    • Автор:

      nataly
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years