• [tex] x_{1} , x_{2} , x_{3} , x_{4} , x_{5} [/tex],  — положительные числа. Какое наименьшее значение
     может принимать выражение:
    [tex] \sqrt[5]{x_{1} x_{2} x_{3} x_{4}x_{5}} [/tex]([tex] \frac{1}{ x_{1} } + \frac{1}{ x_{2} }+ \frac{1}{ x_{3} }+ \frac{1}{ x_{4} }+ \frac{1}{ x_{5} }[/tex])?

Ответы 1

  • При x1 = x2= x3 = x4 = x5 = 1 будетКорень 5 степени(1)*(1 + 1 + 1 + 1 + 1) = 1*5 = 5Это и есть минимум.Если хоть одно число будет больше 1, то корень будет больше 1, и произведение получится больше 5.Например, при x1 = 2; x2 = x3 = x4 = x5 = 1 получитсяКорень 5 степени(2)*(1/2 + 1 + 1 + 1 + 1) = Корень 5 степени(2)*4,5 ~ 5,17Если же хоть одно из чисел будет больше 0, но меньше 1, то обратное число будет большим.Например, при x1 = 0,5; x2 = x3 = x4 = x5 = 1 получитсяКорень 5 степени(0,5)*(2 + 1 + 1 + 1 + 1) = Корень 5 степени(0,5)*6 ~ 5,22
    • Автор:

      arrow7wxa
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years