• Доказать, что последовательность 1,⅓,1/9,... является геометрической прогрессией, и найти сумму первых пяти её членов

Ответы 2

  • Решение во вложении...

    answer img
    • Автор:

      jared
    • 5 лет назад
    • 0
  • Свойство геометрической прогрессии:

    b_{n+1}^2=b_n\cdotb_{n+2}, \\ b_2^2=b_1\cdot b_3, \\ (\frac{1}{3})^2=1\cdot \frac{1}{9}, \\ \frac{1}{9} = \frac{1}{9}.

     

    S_n=\frac{b_1(1-q^n)}{1-q}, \\ S_5=\frac{b_1(1-q^5)}{1-q}, \\ q=\frac{b_n}{b_{n+1}}, \\ q=\frac{b_2}{b_1}, \\ q=\frac{\frac{1}{3}}{1}=\frac{1}{3}, \\ S_5=\frac{1(1-(\frac{1}{3})^5)}{1-\frac{1}{3}}=\frac{(3^5-1)\cdot3}{3^5\cdot2}=\frac{242}{81\cdot2}=\frac{121}{81}=1\frac{40}{81}.

    answer img
    • Автор:

      star5
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years