а) cos15 cos75 = cos15 cos(90-15) = cos15 sin15 =
2sin15 cos15 = 2=
sin(2*15) =
sin30 =
1 = 1/4 2 2 2*2б) (cos(π/8) + sin(π/8)) (cos³(π/8) - sin³(π/8)) = =(cos(π/8) + sin(π/8))(cos(π/8) - sin(π/8))(cos²(π/8)+cos(π/8) *sin(π/8)+sin²(π/8))= =(cos²(π/8) - sin²(π/8)) (1 +
2sin(π/8) cos(π/8)) = 2= cos(2 * (π/8)) * (1 +
sin(2 * (π/8))) = 2= cos(π/4) * (1 +
sin(π/4)) = 2=
√2 ( 1 +
√2 ) =
√2 (
4 + √2) =
4√2 + 2 =
2 (2√2 + 1) =
2√2 +1 2 2*2 2 4 2*4 2*4 4в) 1+tgα tg2α =
1 cos2α1+tgα tg2α = 1 +
sinα *
sin2α = 1 +
sinα *
2sinα cosα = cosα cos2α cosα cos2α= 1 +
2sin²α =
cos2α + 2sin²α =
cos²α - sin²α + 2sin²α = cos2α cos2α cos2α=
cos²α + sin²α =
1 cos2α cos2α
1 =
1 cos2α cos2αЧто и требовалось доказать.