Предмет:
АлгебраАвтор:
peterandolphНайдём уравнение касательных к графику функции f(x) = -8x-x².
f'(x) = -(8x)'-(x²)' = -8-2x
Уравнение для касательной с абсциссой точки касания x₁ = -6:
f'(x₁) = f'(-6) = -8-2·(-6) = -8+12 = 4;
f(x₁) = f(-6) = -8·(-6)-(-6)² = 48-36 = 12;
y = f'(x₁)·(x-x₁)+f(x₁) = 4·(x-(-6))+12 = 4x+24+12 = 4x+36.
Уравнение для касательной с абсциссой точки касания x₂ = 1:
f'(x₂) = f'(1) = -8-2·1 = -8-2 = -10;
f(x₂) = f(1) = -8·1-1² = -8-1 = -9;
y = f'(x₂)·(x-x₂)+f(x₂) = -10·(x-1)+(-9) = -10x+10-9 = -10x+1.
Стороны треугольника лежат на прямых:
y = 4x+36; y = -10x+1; x = 0.
Найдём вершины треугольника.
\displaystyle \left \{ {{y=4x+36} \atop {x=0\qquad \quad }} \right. \; \left \{ {{y=4\cdot 0+36} \atop {x=0\qquad \quad }} \right. ;\; A(0;36)
\displaystyle \left \{ {{y=-10x+1} \atop {x=0\qquad \quad }} \right. \; \left \{ {{y=-10\cdot 0+1} \atop {x=0\qquad \qquad }} \right. ;\; B(0;1)
\displaystyle \left \{ {{y=4x+36\quad } \atop {y=-10x+1}} \right. \; \left \{ {{4x+36=-10x+1} \atop {y=4x+36\qquad \qquad }} \right. \\\\\left \{ {{x=\dfrac{1-36}{4+10}} \atop {y=4x+36}} \right. \; \left \{ {{x=\dfrac{-5}2} \atop {y=-10+36}} \right. \\\\C(-2,\!5;26)
Сторона AB лежит на оси Oy, поэтому высота CH, треугольника ABC, будет параллельна оси Ox. А значит, CH = |-2,5| = 2,5.
AB = 36-1 = 35, поскольку эта сторона перпендикулярна оси Ох.
Площадь треугольника равна полупроизведению его высоты и стороны к которой она проведена.
S(ABC) = \dfrac12 \cdot CH\cdot AB = 2,5·35/2 = 175/4 = 43,75
Ответ: 43,75.
Автор:
ashlr4fДобавить свой ответ
Предмет:
Русский языкАвтор:
hopeg7fzОтветов:
Смотреть
Предмет:
МатематикаАвтор:
tatalu2mОтветов:
Смотреть
Предмет:
МатематикаАвтор:
eric226Ответов:
Смотреть
Предмет:
АлгебраАвтор:
jordonne1iОтветов:
Смотреть