• Найти число решений |x^2-2x-3|=a

Ответы 1

  • Парабола у=х²-2х-3 имеет корни  х=-1 и х=3, вершина в точке (1,-4).Тогда при построении  графика функции у=|x²-2x-3| надо отобразить относительно оси ОХ ту часть параболы, которая лежит ниже оси ОХ. И график этой функции будет располагаться выше оси ОХ, то есть |x²-2x-3|>=0.Графиком функции у=а является прямая , параллельная оси ОХ.Точки пересечения этих двух графиков - это и есть корни (решения) уравнения  |x²-2x-3|=a.так как а может быть любым числом, то надо посмотреть по графику, сколько точек пересечения мы будем получать в зависимости от числа а.При  -∞<a<0  решений нет.При a=0  и  4<a<+∞  имеем два решения.При 0<a<4  имеем четыре решения.При а=4  имеем три решения.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years