• доказать, что из любых ста целых чисел можно выбрать несколько( или,быть может, одно), сумма которых кратна 99

Ответы 1

  • Пусть x_1, ..., x_{100} - данные числа. Рассмотрим суммы S_1=x_1; S_2=x_1+x_2; ...;S_{100}=x_1+x_2+...x_{100}. Если хотя бы одна из этих сумм делится на 99, задача решена. Если нет, то эти 100 сумм при делении на 99 могут давать остатки 1,2,3,...., 98 (98 разных остатков). По принципу Дирихле какие-то две суммы S_i и S_j будут давать одинаковые остатки. Предположим, что i>j, и тогда S_i-S_j=x_{j+1}+x_{j+2}+...x_{i} делится на 99. Сумма x_{j+1}+x_{j+2}+...x_{i} - искомая

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years