2) log0,5_(2x+1) = - 2;- log2_(2x+1) = - 2;log2_(2x+1) = 2;2x+ 1= 2^2;2x = 3; x= 1,5.3)log2_(4 - 2x) + log2_3 = 1;log2_((4-2x)*3 = 1;log2_(12 - 6x) = 1;12 - 6x = 2^1; 12 - 6x = 2;- 6x = -10;x = 10/6= 5/3.4) log7_(x-1) = log7_2 + log7_3;log7_(x-1) = log7_(2*3);x - 1 = 6; x = 7.5)1 ≤ 7x - 3 < 49; +3 1 + 3 ≤ 7x < 49 + 3;4 ≤ 7x < 52;4/7 ≤ x < 52/7.6) log2_(1 - 2x) < 0;log2_(1 - 2x) < log2_1;2 > 1; ⇒ 1 - 2x < 1;- 2x < 1 - 1; - 2x < 0; /-2 < 0;
x > 0 7) lg(0,5 x - 4) < 2;lg(0,5x - 4) <lg100;0,5x - 4 < 100;0,5 x < 104; * 2>0;
x < 2088) log0,2_(2x+3) ≥ - 3; 0,2 = 1/5 = 5^(-1);- log5_(2x + 3) ≥ - 3; /-1 <0;log5_(2x + 3) ≤ 3;log5_(2x+3) ≤ log5_125;5 > 1; ⇒ 2x + 3 ≤ 125; 2 x ≤ 122; x ≤ 61.В первом задании не понятно условие.