• помогите найти производную от функций

    1) (3^x+3^(2-x))/ln3

    2) 0.5x^2-lnx

Ответы 1

  • (\frac{3^x+3^{2-x}}{ln 3})'=\frac{1}{ln 3}*(3^x+3^{2-x})'=\frac{1}{ln 3}*((3^x)'+(3^{2-x})')=\\ \frac{1}{ln 3}*(3^x*ln 3+3^{2-x}*ln 3*(2-x)')=\\ \frac{1}{ln 3}*(3^x*ln 3+3^{2-x}*ln 3*(-1))=\\ 3^x-3^{2-x}

     

    (0.5x^2-ln x)'=(0.5x^2)'-(ln x)'=0.5(x^2)'-\frac{1}{x}=0.5*2x-\frac{1}{x}=x-\frac{1}{x}

    • Автор:

      karma61
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years