• 8//(10-2X)+(5-X)//(X^2+5X)+(X^3+5X^2-15X+25)//(X^3-25X) доказать, что ответ не зависит от значения переменной

    //-дробь

    ^2-степень

Ответы 1

  • \frac{8}{10-2x}+\frac{5-x}{x^2+5x}+\frac{x^3+5x^2-15x+25}{x^3-25x}=

    =-\frac{8}{2(x-5)}+\frac{5-x}{x(x+5)}+\frac{x^3+5x^2-15x+25}{x(x-5)(x+5)}=

    =\frac{-8x(x+5)+2(x-5)(5-x)+2(x^3+5x^2-15x+25)}{2x(x-5)(x+5)}=

    =\frac{-8x^2-40x-2(x^2-10x+25)+2x^3+10x^2-30x+50}{2x(x-5)(x+5)}=

    =\frac{-8x^2-40x-2x^2+20x-50+2x^3+10x^2-30x+50}{2x(x-5)(x+5)}=\frac{2x^3-50x}{2x(x-5)(x+5)}=

    =\frac{2x(x^2-25)}{2x(x-5)(x+5)}=1

    значит не заисит от значения переменной

    • Автор:

      bram3tkc
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years