Надо все логарифмы привести к одному основанию. Будем делать основание = 21)logx(2) = log2(2)/log2(x) = 1/log2(x)2)log2x(2) = log2(2)/log2(2x) = 1/(1+ log2(x))3) log4x(2) = log2(2)/log2(4x) =1/(2+ log2(x))наш пример:1/log2(x) * 1/(1+ log2(x) = 1/(1+ log2(x))1/log2(x)(1+log2(x) = 1/(2 + log2(x))log2(x)(1+log2(x) = 2 + log2(x)log2(x) = tt(1 + t) = 2 + tt +t^2 = 2 +tt^2 = 2t = +-

a) t =

б) t = -

log2(x) =

log2(x) =-

x = 2^