• Найдите наименьший положительный период функции

    у = sinx + cosx

Ответы 1

  • y=sinx+cosx=sinx+sin(\frac{\pi}{2}-x)=2sin\frac{x+\frac{\pi}{2}-x}{2}\cdot cos\frac{x-\frac{\pi}{2}+x}{2}=\\\\=2sin\frac{\pi}{4}\cdot cos(x-\frac{\pi}{4})=\sqrt2\cdot cos(x-\frac{\pi}{4})Коэффициент при переменной х в аргументе косинуса = 1, поэтому наименьши положительный период заданной функции будет  таким же , как был у функции y=cosx, то есть Т=2\pi .
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years