• Докажите, что сумма кубов двух последовательных натуральных чисел делится на 3.

Ответы 1

  • Главная формула для доказательства (a+b)3=a3+3a2b+3ab2+b3 Доказать, что Х в кубе + (Х+1) в кубе + (Х + 2) в кубе делится на 3. В итоге получим сумму слагаемых, каждое из которых делится на 3. Пишу, как это написано в формуле выше - Х3 + (Х3 + 3Х2 + 3Х +1) + (Х3 + 6Х2 +12Х + 8) = 3(Х3 + 3Х2 + 5Х + 3)
    • Автор:

      javanojku
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years