• Сколько действительных кореней имеет уравнение

    1+x-x^2=|x^3|

Ответы 1

  • Если x≥0, то 1+x-x^2=x^3, т.е. (x-1)(x+1)^2=0, значит неотрицательный корень только x=1.На интервале x∈(-∞,0)  функция 1+x-x^2 возрастает от -∞ до 1, а функция |x³| (которая для отрицательных х равна -x³) убывает от +∞ до 0, значит среди отрицательных х уравнение имеет ровно один корень. Итак, ответ: 2 действительных корня.
    • Автор:

      jordon
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years