
Чередуются цифры: 3, 9, 7, 1.Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).

Чередуются цифры: 7, 9, 3, 1.Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).16 = 4*4 + 0, следовательно, числа

и

оканчиваются на 1, а их сумма (...1 + ...1) на 2.Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:
, \ 3^2 \equiv 9 \ (\mod 10 \ )\\\\
3^4 \equiv 81 \ (\mod 10 \ ), \ 81 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 3^4 \equiv 1 \ (\mod 10 \ )\\\\
3^{16} \equiv 1 \ (\mod 10 \ ))