• По теме комбинаторика.
    [tex]\frac{A_x^4*P_{x-4}}{P_{x-4}}=42\\\frac{x! (x-4)!}{(x-4)! (x-2)!}=42\\x (x-2)=42[/tex]
    Как мы получили x (x-2)=42? Понятно, что скобки (x-4)! сократились. Дело не в этом

Ответы 1

  • \frac{A_x^4*P_{x-2}}{P_{x-2}}=42Понятное дело , что мы можем сократить перестановки. Получаем тогда следующее:A_x^4=42То есть: \frac{x!}{(x-4)!}=42 Есть свойство: Каждый больший факториал можно выразить меньшим факториалам.То есть: \frac{x(x-1)(x-2)(x-3)(x-4)!}{(x-4)!}= x(x-1)(x-2)(x-3)=42
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years