1) 8(1-Sin²x) + 6sinx = 3 8 - 8Sin²x + 6Sinx -3 = 08Sin²x -6Sinx -5 = 0Решаем как квадратноеD = 36 -4*8*(-5) = 196Sinx = (6+14)/16 = 20/16 ( нет решений)Sinx =(6 -14)/16 = -1/2Sinx = -1/2x = (-1)^(n+1)π/6 + nπ, n ∈Z2)Cos²2x + Cos6x -Sin²2x = 0 Cos4x + Cos6x = 0 ( формула суммы косинусов)2Сos5xCosx = 0Cos5x = 0 или Cosx = 05x = π/2 + πk , k ∈Z x = π/2 + πn , n ∈Z x = π/10 + πk/5, k ∈Z 3) (Cos²2x - Sin²2x)(Cos²2x+Sin²2x) = √3/2Cos²2x -Sin²2x = √3/2Cos4x = √3/24x = +-arcCos(√3/2) + 2πk , k ∈Z4x = +-π/6 +2πk , k ∈Zx = +-π/24 + πk/2 , k ∈Z4) 4Sin²x -8SinxCosx +10Cos²x = 3*14Sin²x -8SinxCosx +10Cos²x = 3(Sin²x + Cos²x)4Sin²x -8SinxCosx +10Cos²x -3sin²x - 3Cos²x = 0Sin²x -8SinxCosx +7Cos²x = 0 | : Cos²xtg²x - 8tgx +7 = 0По т. Виета tgx = 1 или tgx = 7 x = π/4 + πk , k ∈Z x = arctg7 + πn , n ∈Z 5) 1 + Cosx + Cos2x = 0 1 + Cosx + 2Cos²x - 1 = 0Cosx + 2Cos²x = 0Cosx(1 +2Cosx) = 0Cosx = 0 или 1 + 2Cosx = 0x = π/2 + πk , k ∈Z Cosx = -1/2 х = +-arcCos(-1/2) +2πn , n ∈Z x = +-2π/3 + 2πn , n ∈Z 6) -Cosx > -0,5 Cosx < 0,5-π/3 + 2πk < x < π/3 + 2πk , k ∈Z