• помагите хоть что нибуть плис 1)Найдите производную функции: а)y=7x^5+3x^4-5\7x +4 б)y=-3√x +1\3 cosx -1\2ctgx в)y=√x(-2x+1) г)y=x\x^2-1 2)Найдите угловой коэффициент касательной к графику функции y=-7cos3x+2sin5x-3 в точке с абсциссой x0=п\3 3)Вычмслите f'(п\6), если f(x)=2cosx+x^2-пч\3 +5 4)прямолинейное движение точки описывается законом s=t^4-t^2(м). Найдите её скорость в момент временни t=3 с. 5)Найдите все значения ч, при которых выполняется неравенство f'<0, если f(x)=81x-3x^2 6)составьте уравнение касательных к графику функции y=x^4+x^2-2 в точках его пересечения его с осью абсцисс. Найдите точку пересечения этих касательных. 7)Найдите все значения х, при которых выполняется неравенство f'=0, если f(x)=cos2x+x√3 и x э [0;4п] 8)Докажите, что функция y=(2x+5)^10 удовлетворяет соотношению 8000x^10(2x+5)^15-(y')^3=0 пожалуйста помогите, срочно!!!!

Ответы 1

  • 1)~ y'=(7x^5+3x^4- \frac{5}{7} x+4)'=35x^4+12x^3-\frac{5}{7}  \\ \\ 2)~ y'=(-3 \sqrt{x} + \frac{1}{3} \cos x-0.5ctg x)'=- \frac{3}{2 \sqrt{x} } -\frac{1}{3} \sin x+\frac{1}{2\sin^2x} 3)~ y'=( \sqrt{x} (-2x+1))'= \frac{-2x+1}{2 \sqrt{x} } -2 \sqrt{x} = \frac{-6x+1}{2 \sqrt{x} } 2) Найдите угловой коэффициент касательной к графику функций:а)  y=-7\cos 3x+2\sin 5x-3 в точке с абсциссой x0=п\3 Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точкеy'=(-7\cos 3x+2\sin 5x-3)'=21\sin 3x+10\cos 5x\\ \\ k=y'( \frac{\pi}{3} )=21\sin \frac{3\pi}{3} +10\cos \frac{5\pi}{3} =21\cdot 0+10\cdot(-0.5)=-53. Вычислите f'(п\6), если f(x)=2cosx+x^2-пx\3 +5 f'(x)=(2\cos x+x^2- \frac{ \pi x}{3} +5)'=-2\sin x+2x-\frac{ \pi }{3} \\ \\ f'(\frac{ \pi }{6})=2\sin \frac{ \pi }{6}+2\cdot\frac{ \pi }{6}-\frac{ \pi }{3} =2\cdot0.5+\frac{ \pi }{3} -\frac{ \pi }{3} =1   4. Производная от пути является скорость, т.е. s'(t) = v(t)v(t)=(t^4-t^2)'=4t^3-2t\\ \\ v(3)=4\cdot 3^3-2\cdot 3=102~ m/s5. Найдите все значения x, при которых выполняется неравенство f'<0, если f(x)=81x-3x^2Производная функции: f'(x)=(81x-3x^2)'=81-6xf'(x)\ \textless \ 0\\ 81-6x\ \textless \ 0\\ \\ -6x\ \textless \ -81\\ \\ x\ \textgreater \ 13.56. составьте уравнение касательных к графику функции y=x^4+x^2-2 в точках его пересечения его с осью абсцисс. Найдите точку пересечения этих касательныхНайдем точки пересечения исходной функции с осью Ох:x^4+x^2-2=0Решая это уравнение как квадратное уравнение относительно x^2, получим корниx² = -2 - не удовлетворяетx² = 1  откуда   x0 = ±1y'=(x^4+x^2-2)'=4x^3+2xy'(1)=4\cdot 1^3+2\cdot 1=4+2=6\\ y'(-1)=4\cdot(-1)^3+2\cdot(-1)=-4-2=-6Найдем теперь эти уравнения касательныхf_1(x)=y'(x_0)(x-x_0)+y(x_0)=6(x-1)+0=6x-6\\ f_2(x)=y'(x_0)(x-x_0)+y(x_0)=-6(x+1)=-6x-6Приравнивая касательные, найдем точки пересечения касательных6x-6=-6x-6\\ 12x=0\\ x=0(1;-6) - пересечение касательных. (см. рисунок).7. Найдите все значения х, при которых выполняется неравенство f'=0, если f(x)=cos2x+x√3 и x э [0;4п] f'(x)=(\cos 2x+x \sqrt{3} )'=-2\sin2x+\sqrt{3} =0\\ \\ \sin2x=\sqrt{3} /2\\ \\ 2x=(-1)^k\cdot \frac{\pi}{3}+ \pi k,k \in \mathbb{Z} \\ \\ x=(-1)^k\cdot \frac{\pi}{6}+  \frac{\pi k}{2} ,k \in \mathbb{Z} Отбор корней из x ∈ [0;4π]k=0;~~ x= \frac{ \pi }{6} \\ \\ k=1;~~ x=-\frac{ \pi }{6} +\frac{ \pi }{2} =\frac{ -\pi+3 \pi  }{6} =\frac{ \pi }{3} \\ \\ k=2; ~~x=\frac{ \pi }{6} + \pi =\frac{ 7\pi }{6} \\ \\ k=3; ~~ x=-\frac{ \pi }{6} +\frac{ 3\pi }{2} =\frac{ 4\pi }{3} \\ \\ k=4;~~ x=\frac{ \pi }{6} +2 \pi =\frac{ 13\pi }{6} 8.  Докажите, что функция y=(2x+5)^10 удовлетворяет соотношению 8000x^10(2x+5)^15-(y')^3=0y'=((2x+5)^{10})'=20(2x+5)^98000x^{10}(2x+5)^{15}-(y')^3=0\\ \\ y'= \sqrt[3]{8000x^{10}(2x+5)^{15}} =20(2x+5)^5x^{10/3}Не удовлетворяет. 
    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years