• Докажите, что выражение: a^2+8а+25 может принимать лишь положительные значения

Ответы 2

  • а²+8а+25 = а²+2*4а+16 + 9= (а+4)² + 9 > 0 при любом значении а, т.е. что и требовалось доказать
    • Автор:

      loveruo1z
    • 6 лет назад
    • 0
  • a²+8a+25=0D=b²-4ac=64-4*25*1=64-100=-36.при этом условии уравнение не имеет корней в области действительных чисел. Графиком данной данной функции является парабола , ветви ее направлены вверх, тк  коэффициент при а² положительный,те 1. график не пересекает ось Ох ,тк Д∠0,следовательно область значений этого трехчены только положительные числа.
    • Автор:

      ayers
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years