11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a == 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*)Заметим, что1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 92) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 -
2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a)Подставляем(*) = 9 + 2sin^2 a + 6sin^4 a + 2 -
4sin^2 a*cos^2 a == 11 + 4sin^2 a - 2sin^2 a +
6sin^4 a
-
4sin^2 a*cos^2 a == 11
- 2sin^2 a +
6sin^4 a +
4sin^2 a*(1 - cos^2 a) == 11 - 2sin^2 a +
6sin^4 a +
4sin^4 a = 11 - 2sin^2 a +
10sin^4 a == 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 == 10(sin^2 a - 1/10)^2 + 109/10Минимальное значение квадрата равно 0, а всего выражения 109/10.