Пусть q - знаменатель геометрической прогрессии, d - шаг арифметической прогрессии. b_n - члены геометрической прогрессии, a_n - члены арифметической прогрессии.По условию:b_1 + b_2 + b_3 = 91 \\ \\ b_1 + b_1 q + b_1 q^2 = 91 \\ \\ b_1 (1 + q + q^2) = 91 Составим члены арифметической прогрессии:a_1 = b_1 + 25 \\ \\ a_2 = b_1 q +27 \\ \\ a_3 = b_1 q^2 +1Каждый член арифметической прогрессии отличается на d (шаг прогрессии):a_2 = a_1 + d; \:\:\:\:\: a_3 = a_2 + d \\ \\ b_1 q +27 = b_1 + 25 + d \\ \\ b_1 q^2 +1 = b_1 q +27 + d \\ \\ \\ b_1 q +2 = b_1 + d \\ \\ b_1 q^2 = b_1 q +26 + d \\ \\ \\ d = b_1 q - b_1 + 2 \\ \\ d = b_1 q^2 - b_1 q - 26 \\ \\ \\ b_1 q^2 - b_1 q - 26 = b_1 q - b_1 + 2 \\ \\ b_1 q^2 - 2b_1 q + b_1 = 28 \\ \\ b_1(q^2 - 2q + 1) = 28Получили ещё одно уравнение. Запишем их вместе:b_1 (1 + q + q^2) = 91 \\ \\ b_1(q^2 - 2 q + 1) = 28Разделим одно на другое почленно:b_1 (1 + q + q^2) = 91 \\ \\ b_1(q^2 - 2q + 1) = 28 \\ \\ \frac{1 + q + q^2}{q^2 - 2 q + 1} = \frac{91}{28} \\ \\ 91q^2 -182q +91 = 28 + 28q + 28q^2 \\ \\ 63q^2 - 210q + 63 = 0 \\ \\ 3q^2 - 10q + 3 = 0 \\ \\ q_{1,2} = \frac{5 \pm \sqrt{5^2 - 3 * 3} }{3} = \frac{5 \pm 4}{3} \\ \\ q_1 = \frac{1}{3} \:\:\:\:\:\: q_2 = 3Найдём первый член геометрической прогрессии:b_1 (1 + q + q^2) = 91 \\ \\ \\ 1. \:\:\: b_1 (1 + \frac{1}{3} + \frac{1}{9} ) = 91 \\ \\ b_1* \frac{13}{9} = 91 \:\:\:\:\:\: b_1 = 63 \\ \\ \\ 2. \:\:\: b_1 (1 + 3+ 9) = 91 \\ \\ b_1* 13 = 91 \:\:\:\:\:\: b_1 = 7Находим 7-й член геометрической прогрессии:1. \:\:\: b_7 = b_1 q^6 = 63 * \frac{1}{3^6} = \frac{7}{81} \\ \\ 2. \:\:\: b_7 = b_1 q^6 = 7 * 3^6 = 7 * 729 = 5103 \ \textgreater \ 1000Одно решение отпадает, т.к. 7-й член по условию д.б. меньше 1000Ответ: 7/81