Решение1-sin2x=2cos^2(x/2)1 - sin2x - 2*[(1 + cosx)/2] = 01 - sin2x - 1 - cosx = 02sinxcosx + cosx = 0сosx(2sinx + 1) = 01) cosx = 0x₁ = π/2 + πk. k ∈ Z2) 2sinx + 1 = 0sinx = - 1/2x₂ = (-1)^(n +1) * arcsin(1/2) + πn, n ∈ Zx₂ = (-1)^(n +1) * (π/6) + πn, n ∈ ZОтвет: x₁ = π/2 + πk. k ∈ Z, k ∈ Z ; x₂ = (-1)^(n +1) * (π/6) + πn, n ∈ Z