• На сборку поступило 10 дет. , среди которых 4 бракованные. Сборщик на удачу берет 3 детали. Найти вероятность событий:
    а) все взятые детали стандартные
    в) только 1 дет. среди взятых стандартная
    с) хотя бы 1 дет. из взятых стандартная

Ответы 1

  • Всего деталей -10Бракованных - 4Стандартных - 6  (10-4=6)1) P(A)= \frac{C_6^3}{C_{10}^3}= \frac{ \frac{6!}{3!3!} }{ \frac{10!}{3!7!} }= \frac{4*5*6}{1*2*3*8*9*10}=  \frac{1}{9}\\\\2)P(B)= \frac{C_6^1*C_4^2}{C_{10}^3}= \frac{6* \frac{4!}{2!2!} }{ \frac{10!}{3!7!} }= \frac{36}{120}= \frac{9}{30} 3) Находим вероятность противоположного события:      Событие D: "Все взятые детали - бракованные"     P(D)= \frac{C_4^3}{C_{10}^3}= \frac{4}{120}= \frac{1}{30}            Теперь можно найти вероятность события С:      "Хотя бы одна деталь  из взятых стандартная"    P(C)=1-P(D)=1- \frac{9}{30}= \frac{30-9}{30}= \frac{21}{30}= \frac{7}{10}
    • Автор:

      jaylin36
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years