• Середина М стороны АД выпуклого четырехугольника АВСД равноудалена от всех его вершин. Найдите АД, если ВС=12, а углы В и С четырехугольника соответственно равны115 и 95 градусов

Ответы 1

  • По условию М - центр описанной вокруг ABCD окружности, а АD - ее диаметр. Т.к. ∠ACD=90°, то ∠BCA=∠BCD-∠ACD=95°-90°=5°. Значит, ∠BAC=180°-∠ABC-∠BCA=180°-115°-5°=60°. Отсюда по теореме синусов для треугольника ABC получаем AD=2R=BC/sin(∠BAC)=12·2/√3=8√3.
    • Автор:

      wolf68
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years