• СРОЧНО, ГАЙЗ, ПОМОГИТЕ, ПОЖАЛУЙСТА!!!
    найдите точки, в которых f'(x)=0, f'(x)>0, если:
    б) f(x)=2x+cos(4x-пи)
    в) f(x)=cos2x

Ответы 2

  • znanija.com/task/18231796 помогите пожалуйста
  • Решениеб) f(x)=2x+cos(4x-пи) = 2x - cos4xf `(x) = 2 + 4sin4x1)  f `(x) = 02 + 4sin4x = 04sin4x = - 2sin4x = - 1/24x = (-1)^(n) arcsin(-1/2) + πk, k ∈ Z4x = (-1)^(n+1) arcsin(1/2) + πk, k ∈ Z4x = (-1)^(n+1) (π/6) + πk, k ∈ Zx = (-1)^(n+1) (π/24) + πk/4, k ∈ Z2)   f `(x) > 02 + 4sin4x > 0sin4x > - 1/2arcsin(- 1/2) + 2πn < 4x < π - arcsin(-1/2) + 2πn, n ∈ Z- π/6 + 2πn < 4x < π + π/6 + 2πn, n ∈ Z- π/24 + πn/2 < x < 7π/24 + πn/2, n ∈ Zв) f(x) = cos2xf `(x) = - 2sin2x1) f `(x) = 0 - 2sin2x = 0sin2x = 02x = πk, k ∈ Zx = πk/2, k ∈ Z2)  - 2sin2x > 0sin2x < 0- π - arcsin0 + 2πn < 2x < arcsin0 + 2πn, n ∈ Z- π  + 2πn < 2x <  2πn, n ∈ Z- π/2  + πn < x < πn, n ∈ Z
    • Автор:

      rustymjup
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years