• Решите уравнение
    [tex]log _{2/3}[/tex] x  -  4[tex] log_{3}[/tex] x=-3

Ответы 1

  • ОДЗ x>0Переходим к новому основанию㏒₂/₃=(log₃x)/(log₃2/3)(log₃x)/(log₃2/3)-4log₃x+3=0приведем всё к одному знаменателю(log₃x-(4log₃x)*log₃2/3+3*log₃2/3)/log₃2/3=0умножим левую и правую часть на знаменатель(log₃x-(4log₃x)*log₃2/3+3*log₃2/3)=0выносим общий множитель за скобку(log₃x)(1-4log₃x)=-3*log₃2/3log₃x=3*log₃2/3/((4log₃x)-1)снова переходим к другому основаниюlog₃x=ln(x)/ln(3)ln(x)=3*log₃2/3*ln(3)/(4log₃x-1)выразим Xx=e^(3*log₃2/3*ln(3)/(4log₃x-1))
    • Автор:

      koda29
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years