lg(5y²-2y+1)/3lg(4y²-5y+1)≤1/3*log(5)7/log(5)7lg(5y²-2y+1)/lg(4y²-5y+1)≤1ОДЗ5y²-2y+1>0D=4-20=-18<0,a>0⇒y∈(-∞;∞)4y²-5y+1>0D=25-16=9y1=(5-3)/8=1/4y2=(5+3)/8=1y<1/4 U y>1lg(4y²-5y+1)≠04y²-5y+1≠14y²-5y≠0y(4y-5)≠0y≠0 U y≠5/4y∈(-∞;0) U (0;1/4) U (1;5/4) U (5/4;∞)log(5y²-2y+1)/lg(4y²-5y+1) -1≤0[lg(5y²-2y+1)-lg(4y²-5y+1)]/lg(4y²-5y+1)≤0lg[(5y²-2y+1)/(4y²-5y+1)]/lg(4y²-5y+1)≤0a){lg[(5y²-2y+1)/(4y²-5y+1)]≥0 (1){lg(4y²-5y+1)<0 (2)(1)(5y²-2y+1)/(4y²-5y+1)≥1(5y²-2y+1)/(4y²-5y+1) -1≥0(5y²-2y+1-4y²+5y-1)/(4y²-5y+1)≥0(y²+3y)/(4y²-5y+1)≥0y(y+3)/[4(y-1/4)(y-1)≥0y=0 y=-3 y=1/4 y=1 + _ + _ +-----------[-3]------------[0]-----------(1/4)----------(1)----------y≤-3 U 0 ≤ y<1/4 U y>1(2)lg(4y²-5y+1)<04y²-5y+1<14y²-5y<0y(4y-5)<0y=0 y=5/40<y<5/4y∈(0;1/4) U (1;5/4)б){lg[(5y²-2y+1)/(4y²-5y+1)]≤0 (3){lg(4y²-5y+1)>0 (4) (3)-3≤y≤0 U 1/4<y<1(4)y<0 U y>5/4y∈[-3;0) Ответ y∈[-3;0) U (0;1/4) U (1;5/4)