• найдите значение дроби х^2-5xy+y^2/x+y+2 при х= 3 +корень из 5 и у= 3 -корень из 5

Ответы 1

  • Числитель делим на y^2, будет(x/y)^2 - 5*(x/y) + 1Найдем\frac{x}{y} = \frac{3+ \sqrt{5} }{3- \sqrt{5} } = \frac{(3+ \sqrt{5})^2}{(3+ \sqrt{5})(3- \sqrt{5})} = \frac{9+6 \sqrt{5} +5}{9-5}= \frac{14+6 \sqrt{5} }{4} = \frac{7+3 \sqrt{5} }{2}Тогда числитель равен(\frac{7+3 \sqrt{5} }{2})^2-5*\frac{7+3 \sqrt{5} }{2}+1= \frac{49+42 \sqrt{5}+45}{4} - \frac{35+15 \sqrt{5} }{2} +1== \frac{94+42 \sqrt{5} }{4}- \frac{35+15 \sqrt{5} }{2} +1= \frac{47+21 \sqrt{5}-35-15 \sqrt{5}+2 }{2}= \frac{14+6 \sqrt{5} }{2} = 7+3 \sqrt{5} Знаменатель тоже делим на y^2, будет(x+y+2)/y^2Найдемy^2=(3- \sqrt{5} )^2=9-6 \sqrt{5}+5=14-6 \sqrt{5}  Тогда знаменатель равен \frac{x+y+2}{y^2} = \frac{3+ \sqrt{5}+3- \sqrt{5} +2 }{14-6 \sqrt{5} }= \frac{8}{14-6 \sqrt{5}} = \frac{4}{7-3 \sqrt{5} }  А вся дробь равна \frac{7+3 \sqrt{5}}{ \frac{4}{7-3 \sqrt{5}} } = \frac{(7+3 \sqrt{5})(7-3 \sqrt{5})}{4} = \frac{49-9*5}{4}= \frac{49-45}{4} =1
    • Автор:

      jaydon
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years