A(из n по m) = n!/(n-m)!;1) (n!/(n-7)!) + (n!/(n-5)!) = 91*n!/(n-5)!,(1/(n-7)!) = 90/(n-5)!,(n-5)!/(n-7)! = 90,(n-6)*(n-5) = 90;n^2 - 11n + 30 - 90 = 0;n^2 - 11n - 60 =0;D = 11^2 + 4*60 = 121 + 240 = 361 = 19^2;n1 = (11-19)/2 = -8/2 = -4, не год, т.к. n - целое положительное.n2 = (11+19)/2= 30/2 = 15.Ответ. 15.2) (n!/(n-7)!) - (n!/(n-5)!) = 109*n!/(n-5)!;(1/(n-7)!) = 110/(n-5)!;(n-5)!/(n-7)! = 110;(n-6)*(n-5) = 110;n^2 - 11n + 30 - 110 = 0;n^2 - 11n - 80 = 0;D = 11^2 + 4*80 = 121+320 = 441 = 21^2;n1 = (11-21)/2= -10/2 = -5<0; не годится.n2 = (11+21)/2 = 32/2 = 16.Ответ. 16.