• решите уравнение (x^2-1)^2 +(x^2-6x-7)^2=0

Ответы 1

  • левая часть представляет собой сумму неотрицательных слагаемых, эта сумма обращается в ноль тогда и только тогда, когда оба слагаемых суть нули, если хоть одно из них отлично от нуля, то вся сумма (левая часть) отлична от нуля (больше нуля). Таким образом данное уравнение равносильно системе:{ (x^2-1)^2 = 0;{ (x^2 - 6x -7)^2 = 0;что равносильно{ x^2-1 = 0;{ x^2 - 6x - 7 = 0;равносильно{ x^2=1;{x^2 - 6x - 7 = 0;первое уравнение дает x1=1; или x2=-1;x1 = 1, подставляем во второе уравнение последней системы:1 - 6 - 7 = 0; <=> -12=0, ложное равенство, поэтому x1=1, не является решением системы.x2 = -1; подставляем во второе уравнение:(-1)^2 - 6*(-1) - 7 = 1+6-7=0, верное равенство, таким образомx=-1 единственное решение системы.Ответ. x=(-1).
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years