1ОДЗx²+x-12≤0x1+x2=-1 U x18x2=-12x1=-4 u x2=3x∈[-4;3]√(12-x-x²)/(2x-7)-√(12-x-x²)/(x-5)≤0√(12-x-x²)(x-5-2x+7)/[(2x-7)(x-5)]≤0√(12-x-x²)(2-x)/[(2x-7)(x-5)]≤0√(12-x-x²)≥0⇒(2-x)/[(2x-7)(x-5)]≤0x=2 x=3,5 x=5 + _ + _-------------[2]------------(3,5)-------(5)--------------2≤x<3,5 U x>5 +ОДЗx∈[2;3]2tga=3сos²a=1:(1+tg²a)=1:10=1/10cosa=1/√10sina=√(1-cos²a)=√(1-1/10)=3/√10sin2a=2sinacosa=2*3/√10*1/√10=0,6cos2a=2cos²a-1=2/10-1=-0,8(3sin2a-4cos2a)/(5cos2a-sin2a)=(1,8+3,2)/(-4-0,6)=5/(-4,6)=-25/23