• Найдите площадь фигуры, ограниченной заданными линиями:
    У=4-х(во второй степени)
    У=0
    Х=0
    Х=2

Ответы 1

  • Чертим чертёж. Находим фигуру, площадь которой необходимо вычислить. Определяем пределы. Из рисунка видно, что искомая фигура лежит на отрезке [0;2] и ограничена графиком функции y=4-x² сверху и у=0 снизу, то есть расположена над осью ОХ. Площадь некоторой фигуры численно равна определённому интегралу, поэтомуS= \int\limits^2_0 {(4-x^2)} \, dx=(4x- \frac{x^3}{3})|_0^2=4*2- \frac{2^3}{3}-0=8- \frac{8}{3}= \frac{16}{3}=5 \frac{1}{3} ед²
    answer img
    • Автор:

      donut
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years