^3 -3^2*(3^x)^2+ \frac{3^2*(3^x)^2-486}{3^x-6}-81 \leq 0 \\ \\
y=3^x \\
y^3-9y^2+ \frac{9y^2-486}{y-6}-81 \leq 0 \\
\frac{y^3(y-6)-9y^2(y-6)+9y^2-486-81(y-6)}{y-6} \leq 0 \\
\frac{y^4-6y^3-9y^3+54y^2+9y^2-486-81y+486}{y-} \leq 0 \\
\frac{y^4-15y^3+63y^2-81y}{y-6} \leq 0 )
ОДЗ: y≠6(y-6)(y⁴-15y³+63y²-81y)≤0y(y-6)(y³-15y²+63y-81)≤0Разложим на множители y³-15y²+63y-81:при у=9 9³ - 15*9² +63*9 -81=729-1215+567-81=0Разделим y³-15y²+63y-81 на (у-9): y³ -15y²+63y-81 | y-9 - ------------ y³ - 9y² y² -6y +9-------------- _ -6y² + 63y -6y² + 54y ---------------- _ 9y - 81 9y - 81 ------------ 0y³-15y²+63y-81=(y-9)(y²-6y+9)=(y-9)(y-3)²y(y-3)²(y-6)(y-9)≤0y=0 y=3 y=6 y=9 - + + - +------- 0 ----------- 3 ------------ 6 ------------ 9 ------------\\\\\\\\\ \\\ \\\\\\\\\\\\\\\\y≤0y=36<y≤93ˣ ≤ 0нет решений3ˣ=3х=16< 3ˣ ≤93ˣ>6x>log₃ 63ˣ ≤ 93ˣ ≤ 3²x ≤ 2x∈{1}U(log₃ 6; 2]