• нужно доказать тождество: 2tg^2(a/2)*(tga+ctga)(1-tg^2(a/2))=1/cos^4(a/2)

Ответы 1

  • 2\cdot  \frac{sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} } \cdot ( \frac{sin \alpha }{cos \alpha } + \frac{cos \alpha }{sin \alpha })\cdot (1- \frac{sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} })=\\  \\=2\cdot  \frac{sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} } \cdot ( \frac{sin^2 \alpha+cos^2 \alpha  }{sin \alpha \cdot cos \alpha })\cdot ( \frac{cos^2 \frac{ \alpha }{2}- sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} })==2\cdot  \frac{sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} } \cdot ( \frac{1  }{sin \alpha \cdot cos \alpha })\cdot ( \frac{cos \alpha }{cos^2 \frac{ \alpha }{2} })=2\cdot  \frac{sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} } \cdot ( \frac{1  }{sin \alpha  })\cdot ( \frac{1 }{cos^2 \frac{ \alpha }{2} })=2\cdot \frac{sin^2 \frac{ \alpha }{2} }{cos^2 \frac{ \alpha }{2} } \cdot ( \frac{1 }{2sin \frac{ \alpha }{2}cos \frac{ \alpha }{2}  })\cdot ( \frac{1 }{cos^2 \frac{ \alpha }{2} })= \frac{sin \frac{ \alpha }{2} }{cos^5 \frac{ \alpha }{2} } Что-то не получается. Проверяйте условие.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years