ОДЗx>0x≠1log(x)√5x≥01)0<x<1√5x≤x5x≤x²x(5-x)≤0x=0 x=5x≤0 U x≥5нет решения2)x>1√5x≥х5х≥х²0≤х≤5x∈(1;5]√(log(x)√5x)=log(x)5log(x)√5x=log²(x)51/2*log(x)5+1/2*log(x)x=log²(x)5log(x)5=aa²-1/2*a-1/2=02a²-a-1=0D=1+8=9a1=(1-3)/4=-1/2⇒log(x)5=-1/2⇒1/√x=5⇒√x=0,2⇒x=0,04∉ОДЗa2=(1+3)/4=1⇒log(x)5=1⇒x=5